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Brownian motion of two interacting particles under a square-well potential
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The Smoluchowski equation for the Brownian motion of two interacting particles through a square-
well potential whose heights are infinitely large at the origin and finite at the other positions of u ( > 0) is
solved exactly for the Laplace transform of the conditional density with respect to time ¢. The analytical
expression for the distinct part of the dynamic structure factor at the initial time with the 8 function has
been also obtained exactly. Moreover, we have calculated the asymptotic behavior of the mean-square
displacement expressed as an explicit function of ¢ and found that it is a function of the height of the po-
tential at u, which directly indicates a deviation from the Einstein relation.

PACS number(s): 05.40.+j

I. INTRODUCTION

Although classical theory of Brownian motion describ-
ing time evolution of particles as a function of space
coordinates has been established a long time ago [1], ex-
act solutions for equations of Smoluchowski and Fokker-
Planck-Kramers have been obtained only for limited
numbers of extremely simple cases such as free and
bound motions under the harmonic potential. This is a
clear contrast to equilibrium statistical mechanics where
various kinds of molecular interactions are allowed to be
interpreted [2]. In the mean time, recent experimental
techniques enable us to measure various dynamic pro-
cesses of molecules in liquids or in solutions, that require
detailed theoretical information on the molecular interac-
tion to interpret their results satisfactorily [3]. It is,
therefore, rather acute to work out significant unsolved
problems in the field. A step to be taken is to consider
that an attractive interaction of two molecules in fluids
will be the square-well potential, if we go further than the
presently solved case of repulsive interaction by the
hard-sphere potential [4]. Our future aim is to treat N in-
teracting particles in the long-time region where a system
we are concerned with is near equilibrium. When we in-
vestigate the long-time dynamic process by the molecular
dynamics, we need a very long computing time. So, we
are to use a self-consistent-field (SCF) procedure de-
scribed later based on the Smoluchowski equation and to
examine the N particle system analytically. If it is
difficult, we are to use a numerical technique that will be
much more efficient than the molecular dynamics. To
this end, we need a basis solution of two-particle system,
just like the case where the solution for the hydrogen
atom is indispensable for investigating many electron sys-
tems by the SCF procedure.

It will be shown that we will be able to find the exact
expression of the conditional density for the square-well
potential and work out the distinct dynamic structure
factor responsible for elastic neutron scattering analyti-
cally based on the Smoluchowski equation. In addition,
we will investigate the mean-square displacement as a
function of time and the potential height to see how the
attractive interaction delays the diffusion and how it devi-
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ates from the Einstein relation which is believed to hold
for most fluids.

II. ONE-DIMENSIONAL MOTION

To consider Brownian motion of particles in a fluid, we
start with the following Smoluchowski equation for the
conditional density p(x,7) expressed as a function of time
7 and the position x:

dp(x,7) _ - 3 |8px,7)  fix)
or  Pax | ax  kgrP®T | M

where D is the diffusion constant, f(x) is the external
force, kg is the Boltzmann constant, and T is the temper-
ature. We shall introduce the reflecting boundary
(infinitively high potential) at x =0 and the square-well
potential ¥ (x) with finite height at x =u as shown in Fig.
1. These are expressed by

—_p|%exT)  flx) —0 (x=
J(x,7) D 3x kBTp(x,'r) 0 (x=0)
V(x)=—V, (0<x<u) (2)

Vix)=0 (x>u).

where J (x,7) is the flux. From the relation,

..................................... e

FIG. 1. Square-well potential V(x).
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_dV(x)
flx)= dx (3)
we see that
fx)=—Vydlx —u) . 4)

Thus, our problem is to find the solution of the following
equation with the boundary conditions in Eq. (2):

Oplx,t) _ 3 1 9pX,0) 4 e —y)p(x,0) (5)
at ax 0x

and the initial condition,

p(x,0)=8(x —x4) att=0, (6)
where

—Dr and A=—20 7)

t=Dr1 an = T (

A convenient way to treat the square-well potential may
be to use an integral transform because of the presence of
the 6 function which has the clear meaning only after be-
ing integrated. To this end, we introduce the double La-
place transform by the following relations:

¢(x,k)=L[p(x,t)]=fomp(x,t)e')‘z'dt ) 8)
= * —éx
®(£,1)= [ “glx,1)e " Fdx . ©

On taking the Laplace transforms on both sides of Eq. (5)
and using Egs. (2) and (6), we find that

(E—AD)D(E,M)=—e “O+EHO,M)— Adlu,M)Ee & .
(10)
|

Slx, )= — %H(x—xo )sinh[ux—xom}%e “Mogosh(Ax )+

The number of particles within the square well can be
readily calculated from (18) and we find

—Au
1 2 e ™cosh(Axg)
L{N,(t)]= ‘ (x,ANdx=—F———"""77-".
[N, ()] fo¢ A2 Ar 24+ A— de M
(19)
Whereas, the mean-square displacement, {x?) is given by

x2 Ae " Mcosh(Ax,)
2 _ o 2 . 4 0
L{x))=—+— POy

(20)

III. THREE-DIMENSIONAL MOTION
UNDER SPHERICALLY SYMMETRIC
SQUARE-WELL POTENTIAL

Let us now consider the case of three-dimensional
Brownian motion under the spherically symmetric
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The inverse Laplace transform with respect to £ leads to

d(x,A)= —iH(x —Xxg)sinh[A(x —x)]

A
— AH(x —u)¢(u,A)cosh[Alx —u)
+¢(0,A)cosh(Ax) , (11D

where H (x) is the Heaviside unit function that is O for
z<0 and 1 for x >0. To avoid divergence at x — o, we
have to set

$(0,0)— Addlu,M)e 0=0, (12)
which leads to
=L AMX_IO)_A_ —AMx —u)
d(x,A) e 5 d(u,Ne
+ ((;’Me*“ [x = max(u,x,)] . (13)
From now on, we shall assume that
u>xg . (14)

On putting x =u in Eq. (13), we have another condition,

— A

2+ A)qS(u,M:—i—e TR g00)e M. (15)

Therefore, it follows from (12) and (14) that

1 —ix, 24 cosh(Ax,)
(O,A)=— R e T (16)
¢ i A (A+2)e— 4
and
eMcosh(Ax,)
Sluh)=2 L (17)

A(A+2)eP—4
We, therefore, find the following result:

[1—H(x —u)]e™+[1—H(x —u)e***]e ™
(A+2)e*—4

A
A

cosh(Axg)

(18)

f
square-well potential whose radial position is denoted by
r where the Smoluchowski equation is given by

Splrt) 1.8 ,
ot r2 or
which leads to

dp(r,t) _ 1 9 >

dp(rt) _ £

21
ar kBT ’ ( )

9%)—-% A8(r —u)p(r,t)} - @

at r2 ar
The initial condition this time is
8(r —rgy)
p(r,0)=——— atr=0. (23)
r

The definition in Eq. (8) is still valid, if x is replaced by r,
but Eq. (9) is not convenient. So, on taking into account
the spherical symmetry, we employ the following Hankel
transform:
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Q(E,N)= f0°°¢<r,x>jo<§'r)r2dr , (24)
where j,(z) is one of spherical Bessel functions which are
jolz)=sinz /z, j,(z)=(sinz—z cosz)/z?, ... .

On taking the inverse transform, we see that

ré(r, =2 [ “[6Q(&, 1) Jsingr dE (25)

m

which is the Fourier sine transform. The idea to use this
integral transform is based on the following relation so
that the Laplacian in Eq. (22) can be conveniently ex-
pressed:

d%j,(z) 2 djo(2)
dz? z dx

=_j0(2) » (26)

%e “Moginh(Ar), (0<r<rg)

pr=—x 1 1
To Ie""sinh(kro), (ro<r<ow)

We now determine ¢(u,A) by putting r=u in Eq. (29)
and deduce that

B, )=p(hu), (30)
where
sinh(Ar,)
p(Au)= 0 1
Arg sinh(Au)

eM+ A4 [cosh(Au)—
Au

(31)
The number of particles inside the potential, N,(¢) can be
obtained from the relation
1 Au+tl
L[Nb(t)]zﬁ_ kz

The mean square displacement satisfies the following re-
lation:

p(Au) . (32)

2
S AU ). (33)

2
ro
LU=+ 725

IV. DISCUSSION

We shall investigate the long-time asymptotic expres-
sions of the mean-square displacements of the one- and
three-dimensional motions in Egs. (20) and (33), respec-
tively. In view of the fact that the initial values must
vanish as time goes on, the long-time behavior in which
we are interested should not depend on the choice of the
initial condition. Hence it is useful to calculate the

+Au¢<u,x)%x
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which enables us to transform Eq. (22) into
Jo(éro) Eji(u)
Q&)= vy +[Au2¢(u,m]—§2+7, 27

where we have used the following boundary conditions:

J(r,t)=—D M—FAS(r—ro)p(r,t) =0 at r=0,
or

and

lim o’p(c,2)=0. (28)
o—0

In view of Egs. (25) and (27), on taking the inverse
Fourier transform we find that

—1—+1 e Msinh(Ar) (0<r<u)
Au

(29)
Au

——1 Ie—)"sinh()»u) (u<r<ow).

mean-square displacement for the uniform distribution at
t=0in 0<x,<u and 0<ry <u, where Egs. (20) and (33)
must be integrated over x, and r,, respectively. Equation
(20) after taking average of x leads to
2 2 A sinh(Au)
Li(x)]=2+=2-= Y
[ ] 302 A% A* e M+ 4 sinh(Au)

Now, we shall concentrate on finding the long-time
behavior of the following formula:

sinh(Au ) A 1
4

A
=4 =
) A e M4 4 sinh(Au) A+ 1+coth(Au)
(—1)"coth™Au)

AE, (A+1)nT!

(35)
To this end, we note that
1 i 1
cothz = ; +2z 21 m (36)
fipen

and

tv+p—l/2
T TD(p+1)

1 1
AMFL (A2 4q)

—1

1 _ _ _
xfoe atyy, v l(l—y)” l/zdy
(for a>0) (37)

(see Ref. [5] on p. 238, after expressing the confluent hy-
pergeometric function by integral representation). In
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view of Eq. (36), we see that coth”(Au ) after decomposing
into partial fractions can be expressed by the summation
of the terms in the form given on the left hand side of Eq.
(37) in the square brackets. In addition, for a large value
of t, the significant contributions to the integral on the
right-hand side of Eq. (37) arise from function near y <<1
in the integrand in view of the Laplace method in asymp-
totic expansion, which enables us to replace the upper
limit in the integral to co. Thus, we obtain an asymptotic
expression for the left-hand side in Eq. (37),

|
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_ 1 1
LMo ———
}\’2[_L+1 (A2+a)v
Lt i (38)
~F(p,+%) PR Via TR
where ,Fy(a,b;z) is a hypergeometric function. Note

that the highest order in ¢ in Eq. (38) is t#~ /2 Since the
full asymptotic expression for L ~![W(A)] seems difficult,
we have carried out our calculations only for n =1 and 2,
which leads to

2
2 _u 1 A 4 3/2 2u ‘/t —1,2 A
H))=—+2 t+ =17+ —+O0(t )| —————= 2t+0(D) || . (39)
) =3 (A+1) " (4417 |3uV7 WV (4+1)
f
If we collect the proportional coefficients for ¢ to see how (h)= 64 1 _64 —y)]" 43)
the Einstein relation looks like for the present case, we K At A +1+y(k 21 A+1)rT!

see that

2

(xz(t)>=u7+2

1 24 ,
A+1 3(4+1)P |

(40)

It is beyond doubt that Egs. (39) and (40) are valid for
large values of A4, even though they happen to give the
correct Einstein relation in the case of 4 =0. We em-
phasize that coefficients obtained after expanding W(A) of
Eq. (35) with respect to 4 ! instead of (4 +1)! be-
come divergent except the first term when the inverse La-
place transform is taken. Now, let us consider the long-
time behavior for the three-dimensional case. We assume
that the initial distribution of the particles is uniform
within the well, which requires to average Eq. (33) over
ry, namely,

3 pusinh(Ary)
2 et

ro rodro
=3 cosh(ku)—Lsinh(ku) (41)
Alu? Au ’
which leads to
3u? 6
L{rX) === +——ul), (42)
: 1= 502 A4
where
]
2 _3y? 1 A 31?2 4
)=="—+6 t ST
A= T T RV
If we keep the ¢ term, we see that
1 A
(ri(t) ——+6 + t. (49)
) 5 A+l 5(4+1)?

This explicitly appears like the result in Eq. (40) that the

whose long-time asymptotic expression we wish to ob-
tain. In Eq. (43) we have defined y(A) by the relation,

(Au +1)sinh(Au)
= . 44
V)= T cosh(Au ) —sinh(Ax) 44

It is extremely important to express ¥ (A) by the relation,

1 | 1ip(Au)
A 1+— | —. (45)
Y( ) }\u 13/2()\,14 )
Further, we note the identity
1, (i ) J (y)
1/2 y 12\Y ' 46)
Is/z(ly) J3/z( )
Since J;,,(y) has simple roots at r,, where
n=1,2,3,..., except at y =0, we can express the second

term on the right-term side of Eq. (45) similarly to Eq.

(36) and find that
Iy ,,(2) _3 <
+2z 47)
13/2( ) z 2122"{""3
Thus, we can use relations in Egs. (37) and (38) to get the
asymptotic expression as before. By carrying out the
terms in Eq. (43) up to n =1 this time, we deduce that
3/2 t Zut
prp iyt o (48)
st sy o }
f
mean-square displacement deviates significantly from the
Einstein relation when A becomes large (see Fig. 2). The
attractive potential drags the diffusion of particles from

the square well. Even though this point is neglected
mostly in the literature, it should be pointed out that the
determination of the diffusion constant from the plot of
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FIG. 2. Plot [{rX(#))—(3u>/5)]/6t vs A.
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FIG. 3. Three-dimensional plot of S} (k*,0*) as a function
of k* and w*.
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FIG. 4. Three-dimensional plot of S,*(k *,*) obtained from
the Gaussian distribution as a function of k* and w*.
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FIG. 5. Three-dimensional plot of SJ(k*,0) as a function of
k* and A.

the slope of the mean-square displacement vs times is not
totally flawless. In fact, there is experimental evidence
which shows the deviation [6]. By treating Brownian
motion under the logarithmic potential, Morita also ob-
served the significant difference [7].

From the definitions in Egs. (8) and (24), on replacing &
and A% by ik and i, respectively, where k and w are wave
number and angular frequency, respectively, we readily
identify the real part of the complex Q(ik,V'iA)/w in Eq.
(27) with the distinct part of the dynamic structure factor
usually denoted by S,(k,w). Because the expression in
Eq. (27) is exact, it may be worthwhile plotting
SH(k*,0*), where S}=S,(k,0)/ u* k*=ku and
o*=wu?/D. The result is shown in Fig. 3 for 4=10.0
and ry=0.0, which means that for ¢t <O two particles
have been at the same position sticking together (for ex-
ample, an ion pair) and suddenly at t =0 they are subject
to the Brownian movement under the square-well poten-
tial. This should be compared with the self part of dy-
namic factor obtained from the Gaussian distribution in
Fig. 4. We see significant differences particularly for
small w*, where an oscillatory behavior shown up. To
see these oscillations more clearly, we have plotted
S7(k*,0) as a function of 4 and k* in Fig. 5 from which
it is evident that the larger 4 becomes, the stronger the
amplitude of the oscillation is. Regarding this S;(k*,0)
as the maximum value, we have also obtained the half
width Aw* of the half height of S}(k*,0) and have
shown it in Fig. 6 where we can see that the oscillatory
behavior is pronounced for small A4.

In order to emphasize the significance of the present
paper further, let us consider N particle system described
by the following Smoluchowski equation:

FIG. 6. Three-dimensional plot of the half-width Aw™* as a
function of k * and 4.
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p(X,,X,, . . (X, X,, . .

L Xyot)

3t X, ax,

i=1 1

S Xy,t) N ( )

1 N
2 [ilX Xy, S XNIXp(X Xy, X0 |
kpT 2,

(50)

where X; represents the position of particle i in one dimension for brevity and f; is the force acting on particle i from

the surrounding particles j. On assuming

N
=3 [ [ [fiX0 Xy X0)p(X 1, 0p(X5,0), . ., p(Xy,0)dX dX, -+ - dXy =F(X;,1)  (51)
VEall

x’V
Zfij(XI)XZ’ e 9XN)
i
we find
9p(X;,t) 3 | 9plX;,t) 1
YR ax, ax, kBTF(X,-,t)p(X,-,t) ,

(52)

which can be solved by the self-consistent field method,
where the value of p(X;,?) can be improved successively.

We see that the solution of the present study will be use-
ful for setting up p(X;,t) as the first trial function.
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FIG. 3. Three-dimensional plot of S} (k*,0*) as a function
of k* and w*.



FIG. 4. Three-dimensional plot of $.*(k *,»*) obtained from
the Gaussian distribution as a function of k* and ©*.



